home / kenya

kenya

Custom SQL query returning 71 rows (hide)

This data as json, CSV

rowididcamera_namelatitudelongitudeseason
1 K10_2018_APR K10 1.33965 37.33965 wet
2 K12_2018_APR K12 1.36533 37.3436 wet
3 K13_2018_APR K13 1.37885 37.31724 wet
4 K15_2018_APR K15 1.33796 37.34808 wet
5 K1_2018_APR K1 1.34301 37.34509 wet
6 K2_2018_APR K2 1.34132 37.35591 wet
7 K3_2018_APR K3 1.3389 37.35971 wet
8 K4_2018_APR K4 1.34592 37.3563 wet
9 K6_2018_APR K6 1.3773 37.32927 wet
10 K8_2018_APR K8 1.34977 37.34861 wet
11 K10_2018_MAY K10 1.35079 37.31666 wet
12 K11_2018_MAY K11 1.34068 37.36948 wet
13 K12_2018_MAY K12 1.36367 37.34232 wet
14 K1_2018_MAY K1 1.34338 37.36946 wet
15 K2_2018_MAY K2 1.36447 37.33069 wet
16 K4_2018_MAY K4 1.35317 37.32727 wet
17 K5_2018_MAY K5 1.35069 37.35938 wet
18 K6_2018_MAY K6 1.36431 37.3228 wet
19 K7_2018_MAY K7 1.33905 37.3703 wet
20 K8_2018_MAY K8 1.35128 37.33648 wet
21 L14_2018_FEB L14 0.656773 36.79211 dry
22 L17_2018_FEB L17 0.65581 36.83339 dry
23 L32_2018_FEB L32 0.62791 36.79237 dry
24 L33_2018_FEB L33 0.62816 36.80632 dry
25 L35_2018_FEB L35 0.62683 36.83535 dry
26 L36_2018_FEB L36 0.627963 36.849461 dry
27 L41_2018_FEB L41 0.61518 36.79118 dry
28 L45_2018_FEB L45 0.613504 36.863837 dry
29 L47_2018_FEB L47 0.59797 36.76174 dry
30 L53_2018_FEB L53 0.5996 36.84956 dry
31 L58_2018_FEB L58 0.58404 36.80709 dry
32 L65_2018_FEB L65 0.57084 36.79295 dry
33 L68_2018_FEB L68 0.57506 36.83375 dry
34 L69_2018_FEB L69 0.57187 36.84949 dry
35 L77_2018_FEB L77 0.54442 36.85145 dry
36 L79_2018_FEB L79 0.52603 36.84921 dry
37 NL10_2018_APR NL10 0.88508 37.43692 wet
38 NL12_2018_APR NL12 0.88483 37.45042 wet
39 NL1_2018_APR NL1 0.83594 37.47395 wet
40 NL2_2018_APR NL2 0.83246 37.45124 wet
41 NL3_2018_APR NL3 0.83573 37.40262 wet
42 NL4_2018_APR NL4 0.85819 37.46489 wet
43 NL5_2018_APR NL5 0.87227 37.45052 wet
44 NL6_2018_APR NL6 0.88555 37.46372 wet
45 NL7_2018_APR NL7 0.8453 37.40997 wet
46 NL8_2018_APR NL8 0.84425 37.47564 wet
47 NL9_2018_APR NL9 0.85814 37.43695 wet
48 T1_2018_APR T1 0.84416 37.39942 wet
49 R10_2018_APR R10 1.09857 37.42961 wet
50 R12_2018_APR R12 1.10189 37.44065 wet
51 R1_2018_APR R1 1.10106 37.4778 wet
52 R2_2018_APR R2 1.10135 37.4945 wet
53 R3_2018_APR R3 1.10309 37.50608 wet
54 R4_2018_APR R4 1.11707 37.46724 wet
55 R5_2018_APR R5 1.11389 37.48055 wet
56 R6_2018_APR R6 1.11576 37.50497 wet
57 R7_2018_APR R7 1.0923 37.45477 wet
58 R8_2018_APR R8 1.09034 37.46538 wet
59 R9_2018_APR R9 1.12846 37.47985 wet
60 N1_2018_MAY N1 1.01999 37.39773 wet
61 N21_2018_MAY N21 1.0205 37.38245 wet
62 N30_2018_MAY N30 1.02145 37.37072 wet
63 ST1_2018_MAY ST1 0.9948 37.4108 wet
64 ST2_2018_MAY ST2 1.01001 37.40857 wet
65 R10_2018_MAY R10 1.03207 37.57412 wet
66 R12_2018_MAY R12 1.04523 37.57349 wet
67 R1_2018_MAY R1 1.03312 37.55968 wet
68 R2_2018_MAY R2 1.07289 37.56024 wet
69 R3_2018_MAY R3 1.05937 37.56018 wet
70 R4_2018_MAY R4 1.05986 37.53265 wet
71 R8_2018_MAY R8 1.0595 37.54639 wet
Powered by Datasette · Queries took 119.092ms